Characterization of all-normal- dispersion microstructured optical fiber via numerical simulation of passive nonlinear pulse reshaping and single-pulse flat-top supercontinuum
نویسندگان
چکیده
The supercontinuum (SC) generated by pumping in anomalous dispersion is sensitive to the input pulse fluctuations and pump laser’s shot noises and does not possess a single-pulse waveform, so the incident pulse becomes a noise-like train of spikes. A simple method of creating pulsed lasers with either pulse-maintaining ultrabroad SC or specially shaped pulse waveforms can be implemented using all-normal-dispersion microstructured optical fibers (ANDi-MOFs). An ANDi-MOF with a simple topology and dispersion profile maximum at 800 nmwas designed using the effective index method. Its properties and suitability were characterized via numerical simulation of femtosecond parabolic pulse formation and generation of an octave-spanning pulsemaintaining SC using a generalized propagation equation. The designed ANDi-MOF is suitable for resolving both problems and allows some detuning of the pulse’s wavelength around 800 nm. However, a better choice for SC generation is pumping at or near the wavelength where the thirdorder dispersion becomes zero. This configuration benefits from the absence of pulse break-up under large pulse energies, which appears otherwise. The fiber can provide a low-cost method for developing supercontinuum sources and a solution to the problems of parabolic waveform formation to meet the needs of optical signal processing and pulse amplification and compression. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JNP.8.083890]
منابع مشابه
Supercontinuum Generation in a Highly Nonlinear Chalcogenide/ MgF2 Hybrid Photonic Crystal Fiber
In this paper, we report the numerical analysis of a photonic crystal fiber (PCF) for generating an efficient supercontinuum medium. For our computational studies, the core of the proposed structure is made up of As2Se3 and the cladding structure consists of an inner ring of holes made up As2Se3 and four outer rings of air holes in MgF2. The proposed structure provides excellent nonlinear coeff...
متن کاملSquare Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm
In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric split-step Fourier (SSF) and fourth order Runge Kutta (RK4) which is an accurate method to solve the general nonlinear...
متن کاملA Bragg-like chirped clad all-solid microstructured optical fiber with ultra-wide bandwidth for short pulse delivery and pulse reshaping
Chirped cladding is proposed as a novel tailoring tool to simultaneously attain wider transmission window and reduced temporal dispersion in an all-solid Bragg-like microstructured optical fiber as compared to its perfectly periodic cladding counterpart. This design route for photonic bandgap microstructured fibers could be exploited as an additional degree of freedom for bandgap engineering. A...
متن کاملAnalysis of Supercontinuum Generation Under General Dispersion Characteristics and Beyond the Slowly Varying Envelope Approximation
The generation of broadband supercontinua (SC) in air-silica microstructured fibers results from a delicate balance of dispersion and nonlinearity. We analyze two models aimed at better understanding SC. In the first one, we characterize linear dispersion in the Fourier domain from the calculated group velocity dispersion (GVD) without using a Taylor approximation for the propagation constant. ...
متن کاملFundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber
Broadband supercontinuum spectra are generated in a microstructured fiber using femtosecond laser pulses. Noise properties of these spectra are studied through experiments and numerical simulations based on a generalized stochastic nonlinear Schrödinger equation. In particular, the relative intensity noise as a function of wavelength across the supercontinuum is measured over a wide range of in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017